Kamis, 06 Oktober 2011

Deret Fourier dalam Persamaan Diferensial Parsial (PDP)

Pengantar Kalkulus Diferensial  

Kalkulus diferensial adalah salah satu cabang kalkulus dalam matematika yang mempelajari bagaimana nilai suatu fungsi berubah menurut perubahan input nilainya. Topik utama dalam pembelajaran kalkulus diferensial adalah turunan. Turunan dari suatu fungsi pada titik tertentu menjelaskan sifat-sifat fungsi yang mendekati nilai input. Untuk fungsi yang bernilai real dengan variabel real tunggal, turunan pada sebuah titik sama dengan kemiringan dari garis singgung grafik fungsi pada titik tersebut. Secara umum, turunan suatu fungsi pada sebuah titik menentukan pendekatan linear terbaik fungsi pada titik tersebut. 

Turunan mempunyai aplikasi dalam semua bidang kuantitatif. Di fisika, turunan dari perpindahan benda terhadap waktu adalah kecepatan benda, dan turunan dari kecepatan terhadap waktu adalah percepatan. Hukum gerak kedua Newton menyatakan bahwa turunan dari momentum suatu benda sama dengan gaya  yang diberikan kepada benda.

Laju reaksi dari reaksi kimia juga merupakan turunan. Dalam riset operasi, turunan menentukan cara paling efisien dalam memindahkan bahan dan mendesain pabrik. Dengan menerapkan teori permainan, turunan dapat memberikan strategi yang paling baik untuk perusahaan yang sedang bersaing.

Turunan sering digunakan untuk mencari titik ekstremum dari sebuah fungsi. Persamaan-persamaan yang melibatkan turunan disebut persamaan diferensial dan sangat penting dalam mendeskripsikan fenomena alam. Turunan dan perampatannya (generalization) sering muncul dalam berbagai bidang matematika, seperti analisis kompleks, analisis fungsional, geometri diferensial, dan bahkan aljabar abstrak.

Persamaan diferensial merupakan suatu persamaan yang menghubungkan sekelompok fungsi dengan turunan-turunannya. Persamaan diferensial terbagi atas persamaan diferensial biasa dan parsial.

Persamaan Diferensial Biasa (PDB) atau Ordinary Differential Equation (ODE) adalah persamaan diferensial dimana fungsi yang tidak diketahui (variabel terikat) adalah fungsi dari variabel bebas tunggal. Persamaan diferensial biasa menghubungkan fungsi dengan sebuah variabel ke turunannya terhadap variabel itu sendiri. Dalam bentuk paling sederhana fungsi yang tidak diketahui ini adalah fungsi riil atau fungsi kompleks, namun secara umum bisa juga berupa fungsi vektor maupun matriks. Lebih jauh lagi, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat yang muncul dalam persamaan tersebut.

Untuk selengkapnya tentang deret fourier dalam PDP, silahkan telusuri link berikut ini:


Tidak ada komentar:

Posting Komentar